An Accelerated Iterative Hard Thresholding Method for Matrix Completion
نویسندگان
چکیده
The matrix completion problem is to reconstruct an unknown matrix with low-rank or approximately low-rank constraints from its partially known samples. Most methods to solve the rank minimization problem are relaxing it to the nuclear norm regularized least squares problem. Recently, there have been some simple and fast algorithms based on hard thresholding operator. In this paper, we propose an accelerated iterative hard thresholding method for matrix completion (AIHT). Then we report numerical results for solving noiseless and noisy matrix completion problems and image reconstruction. The numerical results suggest that significant improvement can be achieved by our algorithm compared to the other reported methods, especially in terms of CPU time.
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملCGIHT: Conjugate Gradient Iterative Hard Thresholding for Compressed Sensing and Matrix Completion
We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for the efficient solution of constrained underdetermined linear systems of equations arising in compressed sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per iteration complexity of simple hard thresholding algorithms with the fast asymptotic convergence ...
متن کاملAccelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
Regularization of ill-posed linear inverse problems via l1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an l1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to l1-constraints, using a gradient method, with projection on l1-balls. The correspondin...
متن کاملAccelerated iterative hard thresholding
The iterative hard thresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces two challenges when applied to practical problems. The step size parameter has to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the ste...
متن کاملGPU accelerated greedy algorithms for compressed sensing
For appropriate matrix ensembles, greedy algorithms have proven to be an efficient means of solving the combinatorial optimization problem associated with compressed sensing. This paper describes an implementation for graphics processing units (GPU) of hard thresholding, iterative hard thresholding, normalized iterative hard thresholding, hard thresholding pursuit, and a two-stage thresholding ...
متن کامل